# 传送门HDU1067

# 描述

Let’s play a card game called Gap.

You have 28 cards labeled with two-digit numbers. The first digit (from 1 to 4) represents the suit of the card, and the second digit (from 1 to 7) represents the value of the card.

First, you shu2e the cards and lay them face up on the table in four rows of seven cards, leaving a space of one card at the extreme left of each row. The following shows an example of initial layout.

Next, you remove all cards of value 1, and put them in the open space at the left end of the rows: “11” to the top row, “21” to the next, and so on.

Now you have 28 cards and four spaces, called gaps, in four rows and eight columns. You start moving cards from this layout.

At each move, you choose one of the four gaps and fill it with the successor of the left neighbor of the gap. The successor of a card is the next card in the same suit, when it exists. For instance the successor of “42” is “43”, and “27” has no successor.

In the above layout, you can move “43” to the gap at the right of “42”, or “36” to the gap at the right of “35”. If you move “43”, a new gap is generated to the right of “16”. You cannot move any card to the right of a card of value 7, nor to the right of a gap.

The goal of the game is, by choosing clever moves, to make four ascending sequences of the same suit, as follows.

Your task is to find the minimum number of moves to reach the goal layout.

# 输入

The input starts with a line containing the number of initial layouts that follow.

Each layout consists of five lines - a blank line and four lines which represent initial layouts of four rows. Each row has seven two-digit numbers which correspond to the cards.

# 输出

For each initial layout, produce a line with the minimum number of moves to reach the goal layout. Note that this number should not include the initial four moves of the cards of value 1. If there is no move sequence from the initial layout to the goal layout, produce “-1”.

# 样例

- Input

412 13 14 15 16 17 21

22 23 24 25 26 27 31

32 33 34 35 36 37 41

42 43 44 45 46 47 1126 31 13 44 21 24 42

17 45 23 25 41 36 11

46 34 14 12 37 32 47

16 43 27 35 22 33 1517 12 16 13 15 14 11

27 22 26 23 25 24 21

37 32 36 33 35 34 31

47 42 46 43 45 44 4127 14 22 35 32 46 33

13 17 36 24 44 21 15

43 16 45 47 23 11 26

25 37 41 34 42 12 31

- Output

0

33

60

-1

# 题解

- 题意：给出表如第一个图，给出每个数，共有28个数，首先要将11,21,31,41放到前面去如第二个图，然后每次可以挑选一个空位把某个数放在此位置，但是

要保证此数恰好是空位左边的数的后一个数，比如空位左边的数是42，则只能把43移到空位去。如果是47的话是没有后一个数的。- map保存状态bfs
- 利用Ascall码将2位数字变成一位字符，这样就可以将整个表的状态放在string里面了
## Code

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

using namespace std;

const int inf=0x3f3f3f3f;

const int N=1e6+7;

const int mod=1e9+7;

int mp[10][10];

string aim="";

map<string,int> vis;

struct node{

string str;

int step;

};

void init(){

char c;

for(int i=1;i<=4;i++)

mp[i][1]=i*10+1;

for(int i=1;i<=4;i++){

for(int j=1;j<=8;j++){

if(j==8) c=1;

else c=i*10+j;

aim+=c;

}

}

}

int bfs(){

vis.clear();

node tem;

string be;char c;

for(int i=1;i<=4;i++)

for(int j=1;j<=8;j++)

be+=mp[i][j];

queue<node> que;

que.push((node){be,0});

vis[be]=1;

while(!que.empty()){

node now=que.front();que.pop();

if(now.str==aim) return now.step;

for(int i=0;i<32;i++){

if(now.str[i]==1&&now.str[i-1]!=1&&now.str[i-1]%10!=7){

tem=now;

for(int j=0;j<32;j++)

if(tem.str[j]==tem.str[i-1]+1){

tem.str[j]=1;

tem.str[i]=tem.str[i-1]+1;

tem.step++;

break;

}

if(vis.count(tem.str))continue;

vis[tem.str]=1;

que.push(tem);

}

}

}

return -1;

}

int main(){

init();

int t;

scanf("%d",&t);

while(t--){

for(int i=1;i<=4;i++)

for(int j=2;j<=8;j++){

scanf("%d",&mp[i][j]);

if(mp[i][j]%10==1)

mp[i][j]=1;

}

printf("%d\n",bfs());

}

return 0;

}